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The total and normal energy distributions of electrons, emitted from a semiconductor conduction or 
valence band, by quantum mechanical tunneling through a surface potential barrier in vacuum, have been 
derived. General results, which apply for arbitrary emitter band structures, barrier shapes and distribution 
functions in momentum space, are given. Specific formulas are worked out for the case of spherical energy 
surfaces, an image force barrier and Fermi-Dirac statistics. The emitter band structure only affects the 
emitted electron energy distribution if the important energy surfaces in momentum space are very small. 
Thus, appreciable effects occur only for non- or semidegenerate semiconductors with low effective masses. 
The prevailing lack of agreement between theory and experiment and some difficulties in interpreting results 
of retarding potential measurements are discussed. 

1. INTRODUCTION 

TH E application of a sufficiently intense electric 
field normal to the surface of a metal or semi

conductor leads to the emission of electrons mainly by 
quantum mechanical tunneling through the surface 
barrier, rather than by thermionic emission over the 
top of the barrier. The fields required for measurable 
emission currents, at room temperature, are in the 
range 107 ro 108 V/cm or, equivalently, tunnel paths 
must be no more than several tens of angstroms long. 
Two ways of observing the phenomena experimentally 
have proved possible. In one, the emitter, in the form 
of a fine needle with a tip radius of about 10 -4 cm, is 
placed inside an evacuated chamber, partly lined with 
a conducting film anode. In the other, a bias voltage is 
applied across a thin insulating film (10 to 100 A) 
sandwiched between two electrodes. I t is convenient to 
distinguish between the two arrangements by describing 
the phenomena as "field emission" in the former case 
and "thin film tunneling" in the latter case even though 
they are fundamentally the same. 

The theory of field emission from metals was first 
derived by Fowler and Nordheim in 1928, who showed 
that, if the temperature is not too high, most of the 
emitted electrons originate from a small energy interval 
around the Fermi level of the metal. Henderson and his 
co-workers,1 using a retarding potential analyzer, were 
the first to demonstrate that the electrons do originate 
from near the Fermi level but the half-widths of their 
measured distributions were too large. The latter was 
in part due to their use of a cylindrical arrangement 
(emitter in the form of a fine tungsten wire) which 
leads to field distortions and poor resolution. 

In comparing their measured distributions with 
theory, Henderson and Dahlstrom1 derived the "normal 
energy distribution" which can be generally defined as 
the number of electrons emitted whose "x-directed 
energy Ex" is in the interval Ex to Ex+dEx. Here, the 
x direction is normal to the emitting surface and Ex is 

the difference between the total electron energy E and 
the energy Ex associated with the tangential electron 
momentum px in vacuum, just outside the metal surface, 
i.e., Ex — pi2/2tn where m is the free-electron mass. In 
the calculation by Henderson and Dahlstrom the free-
electron model is assumed for the metal (with a free-
electron mass) so that if px is conserved, Ex is simply 
(px

2/2m) which is their definition of Ex. Our more 
general definition applies for an arbitrary band structure 
of the emitter. 

Miiller2 employed a spherical retarding potential 
arrangement and in later work3 achieved good agree
ment between the emitted energy distribution from a 
tungsten tip and the calculated normal energy dis
tribution. However, in 1959, Miiller and Young4 re-
measured the energy distribution in an improved 
retarding potential tube and obtained distributions 
about one-third as wide as those predicted by the 
normal energy distribution theory. They pointed out 
that the previous agreement between theory and 
experiment, which arose because of the limited reso
lution of the older analyzer, was spurious since the 
experimental arrangement actually measures the "total 
energy distribution." This is defined as the number of 
electrons emitted whose total energy is in the range E 
to E-\-dE. Very good agreement was finally obtained 
between the new measurements and the calculated total 
energy distribution,5 almost thirty years after the first 
experimental attempts were made. 

Fischer6 has derived total energy distributions for 
field emission from the conduction and valence bands 
of a semiconductor. His expression for valence-band 
emission is, however, incorrect since he based his calcu
lations on a previous derivation by the present author7 

for the total valence-band emission current which 
needs to be modified, (cf. Sec. 4 and the Appendix where 

1 J. E. Henderson and R. E. Badgley, Phys. Rev. 38, 590 (1931); 
J. E. Henderson and R. K. Dahlstrom, ibid. 45, 764 (1934); 55, 
473 (1939). 

2 E. W. Miiller, Z. Physik 102, 734 (1937). 
3 E. W. Miiller, Z. Physik 120, 261 (1943); E. W. Miiller and 

K. Bahadur, Phys. Rev. 102, 624 (1956). 
4 R. D. Young and E. W. Miiller, Phys. Rev. 113, 115 (1959). 
5 R. D. Young, Phys. Rev. 113, 110 (1959). 
6 R. Fischer, Phys. Stat. Sol. 2, 1088 (1962); 2, 1466 (1962). 
7 R. Stratton, Phys. Rev. 125, 67 (1962). 
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correct expressions for the total emission current are 
given.) 

In the present paper general expressions for the total 
energy distributions are derived for arbitrary band 
structures and internal distribution functions, in mo
mentum space, for the electrons just outside the semi
conductor surface. The expressions for conduction-band 
emission reduce to those given by Fischer as special 
cases (either nondegenerate or degenerate electron gas; 
constant effective mass different from the free electron 
mass). 

As a further extension of the theory, the normal 
energy distribution for both conduction and valence 
band emission has also been derived. This is of interest 
in connection with thin film tunneling. So far, the only 
retarding potential experiments on thin film tunneling 
have involved emission from aluminum. Kanter and 
Feibelmari8 measured the normal energy distribution 
of electrons emitted from an AI-AI2O3-AU sandwich 
into vacuum. Here the electrons which tunnel through 
the oxide layer emerge into the conduction band of the 
oxide and then pass through the conduction band of the 
outer or gold metal electrode before being emitted or 
captured. Thus, although the tunneling calculation 
gives the initial energy distribution, the final energy 
distribution of the emitted electrons will generally be 
broader and displaced to lower energies because they 
suffer collisions, involving energy losses, in the oxide 
and base metal electrode. Collins and Davies9 have 
made similar measurements on AI-AI2O3-AI sandwiches 
but involving a small cathode and spherical collector. 
They interpret their results on the total energy dis
tribution entirely in terms of the collision phenomena. 

In the next section, the principles involved in deter
mining energy distributions by means of the retarding 
potential analyzer are discussed to bring out the 
difficulties in obtaining unambiguous results for semi
conductors. The calculated results and some of the few 
experimental measurements for field emission from 
semiconductors that have appeared in the literature are 
discussed in the final section. 

2. RETARDING POTENTIAL MEASUREMENTS 

The total energy distribution of field emitted electrons 
can be experimentally determined in a retarding-
potential analyzer.4 Initially, a hypothetical one-
dimensional plane structure will be assumed since this 
greatly simplifies the explanation of the principle 
involved in the experiment. Figure 1 shows the electron 
potential energy diagram for emission from a metal. A 
high field is applied to the surface of the cathode by 
means of an anode in the form of a grid. The field 
emitted electrons which pass through the grid are then 
collected by the collector provided the electron kinetic 

8 H. Kanter and W. A. Feibelman, J. Appl. Phys. 33, 3580 
(1963). 

9 R. E. Collins and L. W. Davies, Appl. Phys. Letters 2, 213 
(1963). 
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FIG. 1. Schematic electron potential energy diagram for the 
retarding potential analyzer with a metal emitter. 

energy corresponding to motion in the x direction, 
normal to the plane of the collector, exceeds 

Ex=xc+U-Vc (la) 
or 

E,-U=Xc-Vc, (lb) 

where f m is the Fermi energy of the cathode, Xc is the 
work function of the collector, Vc is bias (in energy 
units) between the cathode and the collector. If ic is 
the current collected then 

ie= [ PN{EJ)dEJ (2) 

and 
PN{EX) = -dic/dEx=dic/dVc (3) 

gives the normal energy distribution. Thus, PN(EX) 
can be determined from the gradient of a plot of ic 

versus F c . 
For a semiconductor with a clean surface, the electron 

potential energy diagram is given by Fig. 2 if the 
emission current is sufficiently weak to permit neglect 
of the internal potential drop arising from the bulk 
resistivity. An internal potential drop V{ has been 
assumed which depends on the applied field and the 
charge in surface states. Electrons emitted from the 
conduction band will be collected if their "^-directed" 
energy is in excess of 

Ex={xc+U+V%)-Vc, (4) 

where f & is the bulk Fermi energy of the semiconductor, 
measured with respect to the bottom of the conduction 
band. The current ic collected will saturate to the value 
j c of the total conduction band emission current when 
the collector bias is 

Vcn=Xc+{h+Vi. (5) 

Thus, besides determining the normal energy distri
bution by means of Eq. (3), the retarding potential 
measurement also gives the value of any internal 
potential drop V{. 

If Vc is increased beyond Vr.n by Eg, the forbidden 



A796 R O B E R T S T R A T T O N 

ANODE 

FIG. 2. Schematic electron potential energy diagram for the 
retarding potential analyzer with a semiconductor emitter having 
an internal potential drop V% due to field penetration. 

energy gap, electrons emitted from the top of the 
valence band can also be collected. Thus if V c is greater 
than 

V^Xc+h+Vi+Eg, (6) 

all the electrons emitted from the valence band whose 
"^-directed" energy, measured downwards from the 
top of the valence band, is less than 

£ , , = Ve- (xc+h+ Vi+Eg) = Vc- Vcp (7) 

will be collected. If iv is the current collected, then 

/• EVx 

iv = / PN{EvJ)dEj (8) 
Jo 

and 
PN(Evx) = div/dEvx=div/dVc. (9) 

If the internal potential drop in the bulk of the 
semiconductor cannot be neglected the electron po
tential energy diagram will have the form shown in 
Fig. 3. Here it has been assumed that the semiconductor 
is in contact with a metal support and the collector 
bias is between the Fermi levels of the support and 
collector respectively. The metal-semiconductor work 
function is Xm». The internal potential drop now has 
contributions from three causes, field penetration 
(region 1), the bulk resistivity (region 2) and the metal-
semiconductor barrier (region 3). In general, the 
boundaries of these regions are not well defined and 
the potential drop must be calculated for the semi
conductor as a whole. However, in practice, estimates 
of the individual contributions may well be fairly good, 
particularly if one of them predominates. 

The previous Eqs. (4) to (9) are also applicable to 
the situation depicted in Fig. 3 if fa is replaced by 
— Xmn which is the Fermi energy of the semiconductor 
in the vicinity of the metal support. Thus again the 
energy distribution and internal potential drop can be 
determined. This can be done even if the semiconductor 
surface is not clean. The presence of, say, an oxide 
layer will, of course, affect the tunnel probability and 
thereby the computed energy distribution but the 

experiment will still yield the internal potential drop 
and the actual energy distribution. 

As pointed out in the Introduction, the use of a 
pointed field emission cathode in the retarding potential 
analyzer actually yields the total energy distribution. 
Hence, the "x-directed" energy Ex in the previous 
equations must be replaced by the total energy E and 
Figs. 1, 2, and 3 can be considered to give the electron 
potential variation along a line from the base of the 
field emission cathode to a point on its tip from which 
emission takes place. In general, the diagrams will be 
different for different locations of the point on this tip, 
i.e., both the internal potential Vi and the external 
field F will vary in a way determined by the cathode-
anode geometry. This is one of the major difficulties in 
comparing measured field emission current-voltage 
characteristics with calculated current density-field 
characteristics. For metals (Vi=0) solutions of 
Poissons' equation for special geometries have been 
obtained which give the field distribution at the tip 
equipotential surface and good agreement between 
theory and experiment was found for the dependence 
of total field emitted current on the voltage applied 
between cathode and anode. The solutions can still be 
applied for semiconducting cathodes if the resistive 
potential drop in the vicinity of the tip region over which 
emission takes place is sufficiently small so that this 
portion of the cathode can be considered to have an 
equipotential surface. 

In a well-constructed retarding-potential analyzer, 
only a small portion of the tip surface is used for col
lection. Thus, even if Vi and F vary along the surface 
of the tip, the experimental energy distribution should 
correspond to a definite value of F. However, par
ticularly in the case of semiconductors, if electrons are 
simultaneously collected from various regions of the 
surface having different values of Vi and F, a series of 
overlapping energy distributions would lead to a very 
wide experimentally observed energy distribution. This 
might play a role in some of the experiments reported 

ANODE COLLECTOR 

FIG. 3. Schematic electron potential energy diagram for the 
retarding potential analyzer with a semiconductor emitter having 
an internal potential drop Vi due to field penetration (region 1), 
the bulk resistivity (region 2) and the metal-semiconductor barrier 
(region 3). 
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where very wide distributions were ascribed to ex
tremely large electron temperatures. 

3. ELECTRON EMISSION FROM THE 
CONDUCTION BAND 

3.1. Total Energy Distribution—Basic Equations 

In this subsection general but rather formal equations 
will be derived which give the total energy distribution 
for arbitrary band structures and for the whole range of 
emission (field to thermionic) processes. 

I t will be assumed that for specular transmission 
through a barrier, depending only on the x coordinate, 
the transmission probability depends on the electron 
state only through the value of the "x-directed" energy 
in the barrier region. Thus, D(E—Ei) is the probability 
that an electron of energy E incident on the surface 
barrier is transmitted, where 

El=p?/2m= (#y*+p*)/2m (10) 

and py, pz are the tangential components of the (con
served) quasielectron momentum components. This 
form of the transmission probability has been shown to 
apply for arbitrary band structures when the WKB 
approximation can be used to match the Bloch waves.10 

The velocity of an electron, normal to the barrier, 
in the conduction band is 

vx=6E/dpx. (11) 

Thus, if f(E) is the electron distribution function in 
momentum space, the total energy distribution is given 
by 

PT(E)dE=—f(E) / D(E-EL) 
¥ J dpx 

XdpxdpydpZj (12) 
where the integral is over the shell in momentum space 
lying between energies E and E+dE. (q = charge on the 
electron, h = Planck's constant.) This can be rewritten 
as 

PT{E) = (2q/W)f{E) [D{E-E,)dpydpz, (13) 

where 

where the integration in the py, pz plane extends over 
all values corresponding to the energy surface E, i.e., 
py and pz are inside the "shadow" of the energy surface 
£ on a plane perpendicular to the x direction. Intro
ducing polar coordinates px and <p in the py, pz plane 
and writing Em(E,<p) for the maximum value of 
Ei = pi2/2m for a particular polar angle <p leads to 

f(E) r2?r r>Em(E,<p) 
PT(E) = K / d<p D(E-EL)dEL (14) 

2x Jo Jo 
r cE 1 r2ir 

= Kf(E)\ i D(Ex)dEx / d<p 
I — ' o 2ir J o 

• E—Em 

X 
/ 
Jo 

D(Ex)dEx (15) 

EX=E-Ei, K=^mq/hz (16) 

In general, D(EX) will decrease very rapidly if Ex 

decreases. Thus, if Em(E,<p) is sufficiently large the 
second integral in Eq. (15) can be neglected and PT{E) 
is completely independent of the conduction band struc
ture. The particular requirements for sufficiently large 
shadows will be discussed later; they must satisfy 

D(E-Em)«D(E). (17) 

Then also the upper limit Em{E,cp) in Eq. (14) and the 
lower limit 0 in the first integral in Eq. (15) will not 
affect the value of PT. If this situation applies, Eq. (15) 
leads to 

d[_PT{E)/ f{E)~\/dE=KD{E). (18) 

Thus, if PT{E) has been measured experimentally, Eq. 
(18) can be used to deduce the transmission probability 
if the distribution function is known. Alternatively, if 
the transmission probability is known, Eq. (15) can be 
used to deduce the distribution function f(E) which 
could be of considerable interest for situations where 
f(E) differs from the thermal equilibrium distribution 
due to high internal field effects.11 

I t must be emphasized that Eqs. (14) and (15) are 
general and apply to field, thermionic-field (T-F) or 
thermionic emission from a conductor of arbitrary 
band structure. In the Sees. 3.2 and 3.4 explicit results 
will be derived for field and T-F emission for a simple 
conduction-band structure. 

3.2 Total Energy Distribution— 
WKB Approximation 

Using the WKB approximation10 gives 

D(Ex) = expZ-B(Ex)l, (19) 
where 

B(Ex) = 2l(2myiyiq / [<p{x) — Ex 

J XI 

G 1 / 2 ^>1 . (20) 

<p(x) is the barrier potential energy, measured with 
respect to the conduction band edge and the limits x± 
and %2 are the classical turning points. 

For subsequent developments the Taylor expansion 
for B(EX) about an arbitrary energy S is required. This 
can be written as 

B(Ex) = b(8)-(Ex-g)c(S)+(Ex-8ya(8)+-'-, (21) 

where 

b(8) = B(8), c(8) = -B'(8), a(8) = B"(8)/2. (22) 

Murphy and Good12 have derived the expressions for 
the coefficients appropriate to the image force barrier. 
General expressions, for potential barriers of arbitrary 

> W. A. Harrison, Phys. Rev. 123, 85 (1961). 

11 M. I. Elinson, Radiotekhn. i Elektron. 4, 140 (1959). 
12 E. L. Murphy and R. H. Good, Jr., Phys. Rev. 102, 1464 

(1956). 
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FIG. 4. Dependence of the reduced half-width cA of the total 
energy distribution on ckT for mc/m = l. The numbers labeling 
each curve refer to the reduced Fermi energy {/kT. 

shape, are given in Ref. 13. By inserting numerical 
values of the fundamental constants the expressions 
for the image force barrier can be written in the form 

b=6.83ff»2(107/F)vfyi/e), 

c= 10.25d^(107/F)t(^i/e) eV-1, (23) 

a=2.56[(91 /2(^/107){l- ( f t / 0 ) ^ M f c / 0 ) eV~2, 

d=+-S, (24) 

which gives some idea of their order of magnitude. 
Here, v and t are tabulated functions14 whose magnitude 
is near one, \p is the electron affinity of the cathode, 

lfc= 1.2 ( F / 1 0 7 ) 1 / 2 ( K - 1)1/*(JC+ 1)- •1/2 (25) 

is the depression of the barrier height due to the image 
force, K is the dielectric constant, energies are in eV 
and F is in V/cm. 

Inserting the expression for D(EX) into Eq. (15) for 
FT(F) gives 

PT(E) = Kf(E)-
2T Jo JE—E 

ec(Ex-&)dExj ( 2 6 ) 

provided that the quadratic and higher order terms on 
Eq. (21) can be neglected, say 

a(Ex-£¥<i. (27) 

Since the major contribution to the integral over Ex 

comes from Ex values near E we choose S equal to E. 
Then the important range of integration is given by 

0<E-E9<l/c, 
13 R. Stratton, Phys. Chem. Solids 23, 1177 (1962). 
14 R. E. Burgess, H. Kroemer, and J. M. Houston, Phys. Rev. 

90, 515 (1953). 

so that the quadratic term in Eq. (21) is less than a/c2 

in this range. From Eq. (23) 

a/c2^0.02U(F/107)/d' >3/2 (28) 

which will always be considerably less than one. Thus, 
carrying out the integration, 

if 

g-HE)r- 1 (-27T 

PT(E) = Kj(E) 1 / e-«B> 
c(E)L 2irJ0 

E™d<p , (29) 

a{E)/lc{E)J<\. (30) 

The specific band structure of the cathode affects only 
the integral which can be neglected when 

z{E)Em{E,<pp>\, (31) 

i.e., a specific form of inequality (17). Since c{E) has a 
magnitude of about 10 eV - 1 only very "small" shadows 
will affect the energy distribution. This is unlikely to 
occur for metals with a large positive Fermi energy but 
band structure effects may be important for semi
conductors and semimetals. 

Fischer has derived FT(E) for the separate cases of 
positive and negative Fermi energies by expanding 
b(Ex) about the Fermi level and conduction band edge 
respectively following Ref. 13. He uses a simplified 
version of Eq. (15), based on spherical energy surfaces 
with an effective mass mc=rcm so that Em(E,<p) is then 
equal to rcE. His results can be written in the more 
convenient forms 

FT(E)=iK/c1)e-^+c^f(E)ec^E(l-e~r^E), (32) 

if 
ai(E-t)2<h r > 0 (33) 

PT(E)=(K/co)e-^f(E)ec^(l-e~r^E), (34) 
if 

a 0 £ 2 < J , f < 0 , (35) 

which can also be derived from Eq. (29). Here ci=c(f) 
and CQ=C(0), etc. The quantity c(E), which is approxi
mately equal to c\— 2a\(E—f), has been replaced by c\. 
The term exp£—rcc(E)E~] is only of importance if 
rcciE<\ when 2ai\E-$\rcE< (2ai)l>2/ci which is small 
[oi. inequality (28)]. Similarly, the factor c(E) in the 
denominator can be replaced by c\ and, for a negative 
Fermi energy, c(E) can be replaced by CQ. Apart from 
the last factor in brackets Eq. (32) is the result first 
obtained by Young5 for the case of metals. 

By differentiating Eq. (32) it can be shown that the 
energy distribution peaks at an energy Ep which satis
fies the equation 

c1(Ep-^=-c1kTln[_{(l+^)c1kT}-^l^, f > 0 , (36) 

where 
Pi^rde™**-!)-1, (37) 

and f(E) is the Fermi-Dirac distribution function 
corresponding to a temperature T. [ I t should be 
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observed that the conditions for which Eq. (32) applies 
will require cikT<l.7'12 This actually is required to 
make PT{E) decrease for large E so that a peak Ep 

exists.] 
From Eq. (37), fix decreases from a maximum value 

of (c\Ep)~
l as rc increases from zero. Thus /?i is very 

much less than one and can be neglected when 

| dt-cikT ln{ (akT)-1-1} | » 1 . (38) 

Except for the limiting case where c\kT tends to one 
this requires that a{ be large compared to one. When 
0i can be neglected Eq. (36) is an explicit equation for 
Ep which shows that as dkT increases from zero, 
ci(Ep~{) decreases from zero to a minimum value of 
— ( e + 1 ) - 1 at cikT=(l-\-e)~~1, then increases to zero 
when cikT= J and then tends to infinity logarithmically 
as akT approaches one. 

Besides determining the location of the peak it is 
also of interest to calculate the half-width A of the 
distribution. Thus, if 

Pr(£i.») = j P r ( £ , ) , (39) 
then 

A=E2-E1. (40) 

An analytic expression for A can only be found in 
the limit of zero temperatures when 

CiA->ln[2/ (c i+e- c >0] . (41) 

For all other values of the parameters Ep and A must 
be determined numerically. The results of these com
putations will be discussed after the case of negative 
Fermi energies has been treated. 

The conditions (20) and (33) for which Eq. (32) 
applies have been previously considered7-12 in connection 
with the calculation of the total emission current for an 
image force barrier. Since the latter essentially involves 
an integration over the normal energy distribution the 
limits must be re-examined for the total energy dis
tribution. For the case where the band structure term 
in Eq. (32) can be neglected it can be shown that 
approximately the previous limits on the field, derived 
in Ref. 13, are recovered. If the band structure term is 
important the inequalities (20) and (33) must be 
checked by inserting the numerical values for Ex and 
E2. 

Since Eqs. (32) and (34) have identical analytical 
forms, Eq. (36) for Ep applies for the case of negative 
Fermi energies with a replaced by c0. However, it is 
more convenient to express the result in the form 

1 r rcc0kT -i 
E p = — In 1 + I {<0 (42) 

rcc0 L l-c0kT-f(Ep)J 

which gives an explicit relation for Ep in the classical 
limit when f(Ep)<Kl. (The limiting relation has already 
been given by Fischer.6) If this applies, Ep increases 
monotonically from kT as cokT increases from zero. 

There is no simple analytical expression for A which 

CkT 

FIG. 5. Dependence of the reduced half-width A/kT of the total 
energy distribution on ckT for me/m-l. The numbers labeling 
each curve refer to the reduced Fermi energy $/kT. 

applies for any values of the parameters when the 
Fermi energy is negative. 

I t can again be shown that the conditions (20) and 
(35) for which Eq. (34) is valid lead to roughly the same 
restrictions on the value of F which were previously 
derived13 for the normal energy distribution. 

The peak values Ep and half-widths A have been 
derived for a variety of parameters by means of a 
numerical analysis of Eqs. (32) and (34). The results 
are given in the form of universal curves in Figs. 4 to 8. 
The numbers labeling each curve refer to the reduced 
Fermi energy ({/kT). For negative Fermi energies only 
the results for ({/kT) —> — oo have been exhibited since 
the curves for ({/kT)=—2 are already close to the 
limiting curves. Figure 4 gives the variation for A as a 
function of temperature T at a constant field (i.e., c is 
constant) for r c = 1. The half-width increases with T for 
air values of ({/kT). Actually, for a fixed {, ({/kT) 
decreases as T increases but A still increases. For a 
more complicated dependence of { on T additional 
numerical work would be required. Figure 5 (for rc= 1) 
gives the variation of A as a function of the applied 
field F at constant T since c is essentially inversely 
proportional to F. I t is of interest that for fields ex
ceeding the condition ckT^ (i.e., the usual range in 
practice) A increases with F for large positive Fermi 
energies and decreases with F for small positive and 
negative Fermi energies. Figure 6 shows the effect of 
different effective masses on A. This is most noticeable 
for negative Fermi energies at large values of ckT. 

The dependence of Ep/kT on ckT for r c = l is given 
in Fig. 7. Thus, for T constant, Ep decreases as F in
creases and for F constant, Ep increases as T increases. 
The variation of Ep with respect to rc is similar to that 
of A, it is appreciable for negative Fermi energies and 
large values of ckT. This behavior is illustrated by the 
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dashed curves in Fig. 7 which correspond to the ex
treme value rc —> 0 and H/kT) = — 00 ? 4, and 10, 
respectively. 

3.3 Normal Energy Distribution 

Assuming the properties of the transmission proba
bility outlined in Sec. 3.1 and using Eqs. (10) and (11) 
gives 

2n rEx,Ex+dEx dE 

PN(Ex)dEx=-D(Ex) / / ( £ ) 
A8 J dpx 

Xdpjpvdp2. (43) 

This is similar to Eq. (12) for PT(E) except for the 
region of integration which is now the shell in mo
mentum space for which the "^-directed" energy is in 
the range Ex, Ex+dEx. The equation can be rewritten 
as 

D(EX) r2- r 
PN{EX)=L—— / d<p / f(Ex+Ex)d(EjJkT), (44) 

(45) 

2ir JQ 

L=4:TWiqkT/hz = KkT, 

where the Ex integration is over all values which satisfy 

O^E^EmiE^^E^E.+E,, <p) (46a) 

Ex^Ex+El^E^Em(E)cP)+Ex, (46b) 

for a given value of Ex. Now Em(E,<p) is non-negative. 
Thus for Ex greater than zero, there will be a range of 
integration for EL which extends from 0 to Em where 
Eiu either satisfies the relation 

or 

Elu=Em(EXu+Ex, <p) (47) 

Elu+Ex=Eu=Em(Eu,<p)+Ex, (48) 

or is infinite if no solution to Eq. (47) exists. The latter 
will arise if Em(E,(p) is always greater than E. For a 
complicated form of the function Em(E,(p) there could 
be additional ranges of integration corresponding to 
more than one solution of Eq. (47). These will generally 
lead to small contributions to the integral and can be 
neglected. 

Carrying out the integration over Ex and inserting 
the limits gives 

PN(Ex) = LD(Ex{\n{l+exp(({-Ex)/kT)} 

(1/2TT) / l n { l + e x p « r - E „ > / * r ) } d * 
Jo 

Ex>0. (49) 

If there are ranges of E for which Em(E,cp) exceeds E, 
negative Ex values are possible. Then the lower limit 
on Ei is given by the smallest positive solution of Eq. 
(47) say Elui and the upper limit is given by the second 
smallest solution, say EiU2 or infinity. Thus 

LD(EX) 
PN(EX) = -

Jo 

2TT 

2- r l + e x p { ( f - £ w l ) / & r } - i 
ml — ~ , .._. \d<P> '0 Ll+exp{tf-Eu2)/kT} 

where Eul=EXui+Ex, etc. 

Ex<0 (50) 

0.9 

FIG. 7. Dependence of the reduced energy Ep/kTi at which the 
total energy distribution has a peak value, on ckT, Full line 
curves; me/m = 1, dashed curves; tnc/m —> 0. The numbers labeling 
each curve are values of the reduced Fermi energy £/kT. 
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Considering again the example of spherical energy 
surfaces in the conduction band, 

£ 1 » = £ * r e ( l - f . ) - 1 , Eu=Ex{l-rc)-K (51) 

Suppose first that rc is less than one. Then only positive 
Ex values are possible and the following special forms 
of Eq. (49) can be deduced. 
If 

i«(f-£u) /*r«(f-£,) /*r , 

if 

if 

PN = LD(E. 

Pv=LD(Ex) (Ex/kT)rc(l-rc)-i. 

l«-(t-Eu)/kT, (£-E.)/kT, 

PN=LD{Ex)(S-Ex)/kT. 

i « - ( r -£„) /*r«- (s-E.)/kT, 

t-Ex 

(52) 

(53) 

(54) 

(55) 

(56) 

+X P(IF) 
-exp 

tf--E,(l-r.)-* 

kT )]• (57) 

The intermediate range, Eq. (54), only exists if ($/kT) 
^rc~

l. For negative Fermi energies only the last range, 
Eq. (56), exists. If rc=l, Eu is infinity and the band 
structure term in Eq. (49) vanishes. This result has 
been derived by Muller.3 Only the ranges corresponding 
to Eqs. (54) and (56) then apply. If rc is greater than 
one, Eu is also infinite for positive Ex values. However, 
negative Ex values are then also possible with 

Eui-

leading to 

PN=LD(Ex)\n 

-Ex(rc-1)~\ Eu2->*> (58) 

/r+E.Crc-l)-1' 
l+exp( 

\ kT 
)]• 

Ex<0. (59) 

Next the location of the peak Exp and half-width of 
the normal energy distribution will be considered. The 
case rc>l when Eu= <*> will be dealt with first. Dif
ferentiating Eq. (49) gives 

Cc(£SBp)*r3-1=lnEl+exp{ {l-Exp)/kT)y f(Exp). (60) 

[This relation is given in Ref. 12 with c(Epx) replaced 
by ci.~] The condition that Epx>0 requires 

(c0kT)-^lnZl+exp^/kT)2/f(0), (61) 

which puts a lower limit on f, say to(c0kT), for a given 
value of cokT. Thus, if f >f0 

E,p=t-crl if c i * r « l (62) 

= t-kTln{2(l-ClkT)} if l-akT«l, (63) 

replacing cp by c\ following Ref. 12. These equations 

correspond to the ranges specified by Eqs. (54) and 
(56), respectively. 

A simple expression for the half-width can only be 
derived for the case akT<£\ when, using Eq. (39), Ex\ 
and EX2 are the solutions of 

so that 
exv{c1tt-Ex)}/{att-Ex)} = 2e, 

^Ex2-Exl=2A5crl. 

(64) 

(65) 

Comparing with Eq. (41) we see that (A»/A) is about 
3.5. 

If f <?o(c0kT), PN'(EX) is negative for all positive Ex. 
But PN'(EX) is positive for all negative Ex (if rc>l) 
according to Eq. (59). Thus the normal energy dis
tribution will have a cusp at Epx=0 with 

P f f(0) = L D ( 0 ) [ l + e x p ( r / f t r ) ] , (66) 

LD(0) 
iV(0+) = [ - / (0)+ar in( l+ e »^)] , (67) 

P / / ( 0 - ) = 

kT 

LD(0)r / (0) 

kT L(rc 

c&Thiil+eti**)]. (68) 
1) J 

A simple result for the half-width exists only for the 
limit - f / * 2 » l when fc/i j n ; ^ 

••kT] 

Ll-c CokT rcCokT+(l — cokT). 
In2. (69) 

For the case rc< 1, Eu is finite and given by Eq. (51). 
The location of the peak is then given by 

1 f{Exp)-f{Exv[\-rc-]-i){l-rc)-i 

In 
l+exp{(f-£ip)Ar)} "I 

(70) 

.i+exp{(r-£,J,[i-f.j-
1)/*r} J 

This reduces to Eq. (60) if the band structure terms 
are neglected which will be possible for sufficiently large 
positive Fermi energies. In the opposite extreme of 
classical degeneracy, 

Ep 

kT 

1 - f . 
In H ri+"

(1-"H 
L 1-cokT J kT 

- » 1 . (71) 

Thus, Ep decreases from kT(l—cokT)~l to zero as rc 

increases from zero to one. (There are no simple results 
for Ax in this case.) 

For the case rc<\> PN(0) = 0 which should be con
trasted with Eq. (66) for rc> 1. This discontinuity seems 
unphysical. What actually happens is that as rc tends 
to one from below, P ; / (0) tends to infinity, the peak 
location tends to zero and the maximum value PN(EXP) 
tends towards PN(0) given by Eq. (66). Thus there is 
a continuous change of shape in the peak of the dis
tribution from a smooth maximum (rc<l) to a cusp 
( r . > l ) . 
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3.4. T-F Emission from the Conduction Band 

The necessary criteria for field emission, dkT< 1 if 
f > 0 and cJzT<l if f < 0 , will not be obeyed if the 
applied field is too low or the temperature is too high. 
Equations (32) and (34) are then not applicable since 
PT{E) is still increasing at the greatest value of E for 
which they are valid. Another region of approximation 
then applies which requires that the quadratic term in 
the expansion of b(E) be retained since the peak of the 
distribution is now well above either the Fermi level 
( f>0) or the bottom of the conduction band. Thus, 
expanding about the peak of the distribution, 

K r f E 
PT=—exp bp—CpEp (1 — cpkT) 

kT 

-ap(E-EPYj 

if 

where 

X[l-e*p{-rJ[cp-2ap(E-Ep)lE)l, (72) 

exp{(E-t;)/kT}»l, (73) 

cPkT=ll+pv{l-2(aP/cP)Ep}l-i 

^Cl+ZMWiW-tt,'}}-1. (74) 
and cp=c(Ep) etc. [Eq. (84) has been deduced using 
Eq. (23) for c{E) and a(E) and the approximate rela
tion, v(y)t2{y)^\ —y2, given by Murphy and Good.12] 
The term involving the factor jSp in Eq. (74) can actually 
always be neglected, so that 

CpfvJL 1 , (74a) 

since /3P> (cpEp)~
1 [cf. Eq. (37)] so that PP<&1 requires 

(Ep/kT)^>l which is consistent with inequality (73). 
For an image force barrier, using Eq. (23) for c(Ep), 
the "almost" explicit relation 

^^[i-(V02Mr)-2], (75) 
where only tp involves Ep on the right hand side, can 
be derived. 

Substituting into Eq. (72) for cpkT from Eq. (74a), 
neglecting the band structure term, gives 

PT(E)= (K/cp)e^kTe-^E~E^2; (76) 

a Gaussian distribution with a half-width 

A-2( ln2) 1 % p - 1 / 2 . 

This can also be written in the form 

C o A-^ 1 ^o( ln2) 1 / 2 (^ /^ ) 1 / 2 

(77) 

(77a) 

for an image force barrier, which shows that A is 
essentially proportional to F/T112. 

The normal energy distribution [cf. Eq. (49)] for 
the T-F emission range is identical with the total energy 
distribution given by Eq. (76) if the band structure 
terms can be neglected. 

The conditions on F and T for which the T-F region 
applies are given in Refs. 12 and 13. In addition, it can 
be shown that the cubic term in the expansion for b(E), 
neglected in Eq. (72), is small. If the cubic term is 
written as 1(g) (E- S)z then 

0 . 4 3 [ - 3 M - 4 I > { 1 - O/V0)2}-1] 
1(8) = - — — e V ~ * (78) 

ev\F/w){\-tti/ey} 
0.43 r4 -3 / 3 - i 

« eV~3. 
(i7io7)03/2L vp J 

Thus 
^(JA)3~0.06(F/107)1 / 2 

and is usually considerably less than one. 

(78a) 

(79) 

4. FIELD EMISSION FROM THE VALENCE BAND 

4.1. Total Energy Distribution—Basic Equations 

I t will again be assumed that for specular trans
mission, through a one-dimensional barrier, the trans
mission probability is a function of only the "^-directed" 
energy in the barrier region and can be written as 
Dv(Ev+Evl)^Dv(Evx) where 

Evl=pvl
2/2m= (pVy2+pvz

2)/2m, (80) 

and Ev is minus the electron energy with respect to the 
top of the valence band as zero.15 The sign convention 
is such that Ev and Evx are positive. Further, as Evx 

increases, the barrier height for tunneling increases, 
the argument of Dv increases and the magnitude of Dv 

decreases. This is opposite to the behavior of D(EX) 
which increases as Ex increases. In fact 

DV(EVX)=D(—EQ—EVX), (81) 

With this definition of D„ the total energy distri
bution is given by 

PT(EV) = 
ME.) /»2T rEvm 

I d<pv I A 
./o J o 27T ./ 0 J 0 

r- rEv 

- Kfv (Ev) I Dv {Ev x) dEv x 

r2r rEy 

(Ev+EvX)dEvl (82) 

- (1/2TT) / d<pv / D{Evx)dEvx , (83) 
./O J Ev+Evm J 

where Evm(Ev,<p) is the maximum value of Evi and Ev 
is the width of the valence band. 

From the form of Eq. (82) it is clear that the major 

15 In Ref. 7 the tunneling probability was erroneously written 
as Dv(—Ev

JrEvi)=Dv(—Evx). Apart from the fact that we now 
choose to define Dv with a positive argument, the signs in front of 
Ev and Evi must be the same. As a result, some of the equations 
in that paper need modification and the final result for the emitted 
current density from a filled band must be multiplied by 
(1—rv)(l-{-rv)~1. The necessary corrections and more general 
results for the emitted current density are given in the Appendix. 
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contribution to the total energy distribution again 
comes from electrons with small values of EvX, If Evm 

is sufficiently large, the second integral in Eq. (83) can 
be neglected and PTv(Ev) is independent of the band 
structure. 

4.2. Total Energy Distribution— 
WKB Approximation 

Using the WKB approximation 

Dv (Evx) = e x p [ - Bv (Evx)2, (84) 
where 

( 2 w ) i / 2 /•*» 

BV(EVX) = 2 / Z<p(x)+Eg+EvxJ'2dx (85) 
* J xi 

= bv(8v)-{-(Evx— 8v)cv(8v) 

+ (Evx-Svyav(Sv). (86) 

Here 
bv(Sv)~B(Sv), cv(Sv) = B'(8v), 

av(8v) = W'(8v) (87) 

are given by Eq. (23), for an image force barrier, if 0 
is redefined as 

e9=$+Eg+69. (88) 

Substituting into Eq. (82), choosing Sv equal to Ev, 
leads to 

g— bv(Ev) 

PT(Ev) = Kfv(Ev)-
cv(Ev) 

X 
L 2T J o 

d(pve~c^8v)Evm (89) 

av(Ev)/lcv(Ev)J<±. 

The dominant factor here is exp[—J„(E„)], i.e., DV(EV). 
For the model of spherical energy surfaces with an 

effective mass mv = rvm, Evm(Ev,<p) reduces to rvE, 
Following the treatment for conduction-band emission, 
the two cases of degenerate (f„>0) and nondegenerate 
(f»<0) hole distributions will be considered separately. 
Here f „ is minus the Fermi energy with respect to the 
top of the valence band as zero (i.e., £ + f „ = — Eg). 
Expanding about the Fermi level and the top of the 
valence band respectively gives 

PT(EV)= (K/cvl)fv(Ev)e~^^M 

X e~~CvlEvri g—rvCviEv"! 

if 
M-Ep-ro2<i> r,>o, (90) 

PT (EV) = (K/cv0)fv (Ev)e-b««-c«E*[\ - er*-*o*.], 
if 

av0Ev*<i, f , < 0 , (91) 

where bvo=bv(0) and bvi=bv(£v), etc. 
Fischer has given a result which should be appropriate 

for the case f„ —> — oo when fv(Ev) —» 1. His result is, 
however, in error since he used the incorrect value of 
DV(EV) in our earlier paper.7 The correct expression for 
PT(EV) has a peak given by 

Evp= (rvCvo)-1 ln ( l+r„) (92) 

and half-width which can be determined from our 
numerical calculations for conduction band emission. 
This follows since Eq. (91), with f(Ev) = 1, has the same 
analytical form as Eq. (34), with t\ —» — <*>, if cQkT is | 
and rc, c0 are replaced by rv, cvo. Thus, from Fig. 6, 
cvoA goes from 1.76 to 2.43 as rv goes from 1 to 0. 

The peak energy and half-width for arbitrary values 
of fv could easily be derived as for the case of conduction 
band emission in Sec. 3. The results will not be presented 
here since the case fv(Ev)~l is probably the most 
important in practice. 

4.3. Normal Energy Distribution 

By analogy with the result for conduction-band 
emission [cf. Eq. (44)] 

L r2w r dEvi 
Pv(Evx)=—Dv(Evx) / dtp, \ ME^-E,,)—, (93) 

2w Jo J kT 

where the Evi integration is over all values which satisfy 

0^Evi^Evm(EVJ(pv)^Evm(Evx~Evi, <pv). (94) 
Thus 

P ^ ( ^ ) = La(£.,)rin{l+exp(<£.,-f.>/ftr)> 

- ( 1 / 2 * ) / " d<pAn{l+exp((Evl-tv)/kT)}~\, (95) 

where 
Evm(Evi, cp) = Evx—Evi. 

In the limit of a completely filled band, 

(96) 

PN(EVX) = KDV(EVX)[EVX-(2TT)-1J Evld<pA. (95a) 

In the spherical energy surfaces approximation 

PN(Evx) = KDv(Evx)Evxrv(l+rv)-
1, (95b) 

which has a peak at J E ^ ^ ^ O - 1 and a half-width equal 
to 2.45 co""1. 

5. CONCLUSIONS 

The numerical results presented in Sec. 3 indicate 
that the half-widths of the total energy distributions 
for electrons emitted from a conduction band are in 
the range of about 2 kT to 7 kT for ckT [cf. Eq. (22) 
and (23)] in the typical range of 0.2 to 0.5 and for all 
degeneracies. For valence-band emission the half-widths 
are in the range |of about 3 kT to 12 kT for the same ckT 



A804 R O B E R T S T R A T T O N 

range. The experiments to be described have invariably 
led to distributions which are much wider than these 
predicted results if T is assumed to be the ambient 
temperature. This has led to a description of the results 
in terms of the hot electron process.16 I t should, how
ever, be observed that limited resolution, bad alignment 
and emission from too large a tip area (cf. Sec. 2) will 
all lead to spuriously wide distributions) problems that 
plagued the early work on tungsten. 

The assumption of specular as opposed to diffuse 
electron transmission (cf. Sec. 3) should apply rea
sonably well to clean semiconducting emitters where 
the tip surface consists of several flat regions corre
sponding to low index crystal planes which join 
smoothly. However, as pointed out by Harrison,10 the 
converse might be the case for thin film tunneling since 
measurements of thin film sheet resistance indicate that 
electron reflection at the surface is predominantly 
diffuse17 in many cases although predominantly specular 
reflection has also been observed.18 

Russell19,20 measured the total energy distribution 
field emitted from a Si tip in a spectrometer said to have 
a resolution20 "lower than Young and Muller's4 by a 
factor three" (i.e., from 0.06 to 0.09 eV). However, the 
width of the energy distribution from a tungsten tip 
was found to be 0.6 eV; about three times the correct 
value as measured by Young and Muller.4 This would 
indicate that there are sources of experimental errors in 
Russel's equipment other than a relatively low 
resolution. {Bote added in proof. Recent calculations (to 
be published) have shown that for nonspecular bound
ary conditions, the integrand in Eq. (16) for PT{E) 
contains an additional factor U(E,pt) = 2p(p /V(p/ ,P*) / 
p(pf) where p(p*) = linear density of states for fixed 
tangential momentum p*, 7r(p/,pf) is proportional to 
the probability that the diffuse boundaries change p / 
to pi and the sum is over the "shadow" of the energy 
surface £ (p ) . Under reasonable assumptions for 
ir(pt,Vt), no appreciable effect of the densities of state 
on U or on the field emission current should occur.] 

Russell19 finds that as the field on the tip is increased 
till emission occurs, total energy distributions are found 
which are similar to those from tungsten except that 
the critical collector bias is greater. In fact, up to a 
certain applied voltage, all the electrons emitted 
originate from the valence band with a constant internal 
potential drop Vi and the quantity Vep—Xc= (f &+£</) 
+ F ;~0 .4 eV. Thus, the Fermi level at the surface is 
about 0.15 eV below the center of the gap, i.e., a ^-type 
surface. Although the relevant parameters are not 
known, the observed width of the distribution is again 
far too wide. As the applied field is increased Russel 

16 A. G. Zdhan and M. I. Elinson, Radiotekhn. i Elektron. 6, 
671 (1961). 

17 A. H. Wilson, The Theory of Metals (Cambridge University 
Press, New York, 1954), p. 248. 

18 M. S. P. Lucas, Appl. Phys. Letters 4, 73 (1964). 
19 A. M. Russell, Phys. Rev. Letters 9, 417 (1962). 
20 A. M. Russell and E. Litov, Appl. Phys. Letters 2, 64 (1963). 

finds that Vcp (or Vi) increases by over 3 V. As pointed 
out by Russell, the absence of any emission from the 
conduction band indicates that this increase in Vi 
cannot arise from pure field penetration as shown in 
Fig. 2. Russell therefore suggests an IR drop as indi
cated in Fig. 3. For a constant internal resistance this 
would imply that the logarithm of the increase in Vi is 
a linear function of the reciprocal applied voltage, 
assuming the usually observed empirical field emission 
relation. An attempt to roughly fit Russell's data in 
this way proves unsuccessful in that Vi increases much 
too fast as the applied voltage increases. Possibly part 
of the increase in Vi does correspond to field penetration. 
(In a private communication, however, Russell has 
informed the author that more complete measurements, 
involving also total emitted current, tend to verify his 
original suggestion that the increase in V% can be 
accounted for by an IR drop.) 

At still higher voltage, the Si tip fractures and 
exposes an irregular, but probably very clean, surface 
of the semiconductor. The observed energy distribution 
then consists of two separate contributions which 
Russell ascribes to emission from the conduction and 
valence bands respectively since their peaks are sepa
rated by an energy equal to the band gap of Si. Actually, 
it is the two energies corresponding to the onset of 
emission from the bottom of the conduction band and 
the top of the valence band which should be separated 
by the band gap whereas their measured separation is 
only about 0.5 eV. (As pointed out by Russell, part of 
this discrepancy may be accounted for by the finite 
time constant of the phase sensitive detector employed.) 
Further, both the distributions are again far too wide 
(about 0.4 and 0.9 eV, respectively) and it does not 
seem reasonable that this should result only from the 
relatively low resolution. 

Zdhan21 and his co-workers used a cathode consisting 
of a thin layer of Si02 on tungsten, activated with 
carbon. Although they claim a resolving power of 0.04 
eV for their analyzer, their measured half-width for 
tungsten is 0.47 eV which again indicates additional 
sources of error. Under the conditions of their experi
ment (layer thickness of about a micron, high internal 
resistivity, low image force barrier height ~0 .8 eV) 
the electron gas in the bulk of the semiconductor is 
heated by the internal field (1^5.104 V/cm) and a 
considerable portion of the emission is over the top of 
the barrier so that the process is more properly called 
hot electron thermionic emission. In trying to explain 
their observations of distribution widths of up to 4 eV 
(!) they predict very high electron temperatures which 
in energy units even exceed the barrier height. Such 
extreme conditions would require a complete refor
mulation of their analysis which, as usual, is based on a 
spherically symmetrical distribution function in mo-

21 A. G. Zdhan, M. I. Elinson and V. B. Sandomirskiy, Radio
tekhn. i Elektron. 7, 630 (1962). 
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mentum space for the electrons just inside the surface 
of the emitter. Zdhan and his co-workers observe that 
the width of the energy distributions increases rapidly 
with rising field strength which is qualitatively con
sistent with a rising electron temperature. 

Similar heating of the electron gas occurs in the 
experiments by Shcherbakov and SokoPskaya22'23 using 
a CdS tip. Their control experiment with a tungsten 
tip, while giving a distribution whose shape is still 
somewhat different from the correct one, does give 
half-width in substantial agreement with theory. They 
observed half-widths which increased as a function of 
the internal potential drop up to values of about 2.3 
eV. An inexplicable aspect of the results is that even 
for a negligible internal potential drop, and presumably 
little electron heating, half-widths as large as 0.8 eV 
were observed. Also, further increases in the half-widths 
occurred before the internal fields were high enough 
to lead to changes in the conductivity which was 
measured simultaneously. 

In summary, the experimental evidence on the high 
resistivity semiconductors Si02 and CdS strongly 
supports the concept of electron heating in the surface 
region due to very intense internal electric fields al
though detailed explanations of the experimental 
results are still outstanding. I t must be pointed out 
that the hot electron distribution function in mo
mentum space, just within the semiconductor surface, 
differs from that in the interior of the cathode if there 
are wide space charge regions.24 The excessively wide 
distributions observed by Russel for Si cannot be 
ascribed to electron heating—at least not for the valence-
band emission. Much more experimental work needs to 
be done on the high conductivity semiconductors to 
clarify the effect of electron heating. 

The energy distributions for electrons emitted by 
thin film tunneling into vacuum have been measured 
by Kanter and Feibelman8 (normal distribution, 
Al-Al203-Au structure) and Collins and Davies9 (total 
distribution, AI-AI2O3-AI structure). In each case the 
emitted distributions had half-widths of about a volt. 
Collins and Davies gave an approximate analysis of 
their results which was based on electron scattering 
processes involving energy loss in the conduction bands 
of both the insulator and the counter electrode (Al). 
For the part of the calculation involving energy loss in 
the conduction band of the insulator they assume that 
all the electrons tunnel from the Fermi energy, i.e., the 
width of the normal energy distribution for tunneling 

2 21. L. Sokol'skaya and G. P. Shcherbakov, Fiz. Tverd. Tela 
3, 167 (1961) [English transl.: Soviet Phys.—Solid State 3, 120 
(1961)]. 

23 G. P. Shcherbakov and I. L. SokoPskaya, Fiz. Tverd. Tela 
4, 3526 (1962) [English transl.: Soviet Phys.—Solid State 4, 2581 
(1963)]. 

24 R. Stratton, Phys. Rev. 126, 2002 (1962). 

is assumed small. For a more detailed analysis, the 
initial normal energy distribution of electrons that have 
tunneled into the conduction band would have to be 
considered since this distribution can be about 0.6 eV 
wide. (Although the calculations in Sees. 3 and 4 are 
based on a parabolic energy momentum relation, the 
results should still apply to tunneling through wide gap 
insulators if the barrier height is not too large and if the 
free electron mass in the barrier region is replaced by 
an effective mass, appropriate to the insulator.13) 

APPENDIX: VALENCE BAND FIELD-EMISSION 
CURRENT 

The drivation given in Ref. 7 needs to be modified 
by replacing Dv(—E+Ex) by DV(EV+Evl) wherever it 
occurs. Thus in Eq. (11) of Ref. 7, the sign in front of 
Evm and Evm' must be changed and a minus sign placed 
in front of the whole expression for the current density 
jv, viz., 

r rEy 
Jv = L\ I dEvx l n { l + e x p [ ( £ , , - r 0 / * r ] } 

Jo 

X{Dv(Evx)~ll+EvJ(Evx)^DZEvx+Evm(Evx)2} 

(Ey — lv\ 
+ln{ 1+expi 

/Ev-U\ 

\ kT ) 

i Emv(Er)+EV 

D.(E,,)d& -]• (Al) 

For the model of spherical energy surfaces we find, 
following Sec. 3 in Ref. 7 

rrv{\+rv)-
1 

j v = Ae-hv0\ r-^{#o(—oko, V) 
L (cvQkTy 

f 7r/Q!vl Ho(ttvl,—y)' 

I sin (71-^1) ett-««i>* 

if v<0 (A2) 

jv = A\ 

—y„e~lvl\-
ir/avi Ho(yvavi, —rj) 

lsin(ira„i) e<x-yv«vi)i }1 
where 

if v>0 (A3) 

yv=l+rv, avo,i=cvo,ikT, y=^v/kT, (A4) 

Ho is a slowly varying function defined in Ref. 7 and 
where the bars on bv\ and a\ (or cv\) indicate that the 
quantity (<p+E0+?v) = Ovl, in their definitions [cf. Eq. 
(23)] must be replaced by 0„i+rv?», usually an un
important distinction. 


